High-Purity Electrofused Mullite Castable Precast Refractory for Steel Rolling Heating Furnaces

The working conditions of certain critical components of industrial kilns, such as high-temperature burner bricks, burner brick upper crossbeams, and the furnace bottom of steel rolling mills, are extremely harsh. The working temperatures of burner bricks and burner brick upper crossbeams often exceed 1500℃, subjecting them not only to high-temperature melting damage but also to the impact of high-speed flame gas flow, their own weight, and the load-bearing capacity. The erosion of iron oxide scale and molten slag mainly damages the furnace bottom of steel rolling mills. In industrial furnaces with frequent start-ups and shutdowns, these components are subjected to stress damage caused by rapid heating and cooling.

Only refractory materials that are both resistant to high temperatures and possess excellent thermal shock stability can meet these requirements. Phosphate castables, high-alumina cement castables, and refractory plastics failed to achieve the desired results. After repeated experiments, high-purity electrofused mullite castable precast refractory achieved satisfactory results.

Theoretical Basis for Material Selection of Precast Refractory Castables in Steel Rolling Heating Furnaces

Why is high-purity electrofused mullite chosen as the main raw material? This is determined by the properties of mullite. Mullite is the only stable compound in the Al₂O₃-SiO₂ binary system. From the Al₂O₃-SiO₂ phase equilibrium, it can be seen that the composition of mullite is between 3Al₂O₃·2SiO₂ and 2Al₂O₃·SiO₂. The composition (by weight) of mullite (A₃S₂) itself is 72.8% Al₂O₃ and 28.2% SiO₂. The composition of the saturated solid solution is 78% Al₂O₃ and 22% SiO₂. That is, the mullite solid solution can contain up to 6% Al₂O₃. Compare the properties of solid solutions in this range below, and the typical composition of mullite 3Al₂O₃·2SiO₂. It has a high melting point (1910℃), high hardness, low high-temperature creep value, and good resistance to chemical corrosion.

Sources of Mullite Raw Materials

Natural mullite is rare among natural minerals. Only extremely small quantities of β-mullite and γ-mullite have been found, and their production is far from meeting the large-scale needs of production. Furthermore, the veins are generally very thin, difficult to mine, and the purity is often insufficient, making them rarely usable.

Fused Mullite Refractory Raw Material
Fused Mullite Refractory Raw Material

Free Quote

    Free Quote

    Your Name (required)


    Your Email (required)

    Your Phone

    Required Products (required)

    Enquiry Information

    There are two methods for the artificial synthesis of mullite: ① sintering method; ② electrofusion method.

    The sintering method involves finely grinding the raw materials required for mullite synthesis, forming them into pellets, and then calcining them at high temperatures in a kiln. Impurities inevitably enter during the production process, and it is difficult to reach the ideal high temperature during calcination, resulting in incomplete reactions, poor crystallization, and poor high-temperature stability.

    The electrofusion method for producing mullite involves strictly mixing raw materials such as industrial alumina, sintered high-quality bauxite, high-purity silica, and silica in a specific ratio, then loading them into an electric arc furnace. After melting at temperatures above 1850℃, the mixture is slowly cooled and crystallized. Because an electric arc is used as the heat source, very few impurities are introduced during the electrofusion process. As long as the purity of the raw materials is controlled, the product quality is relatively easy to manage, and high-purity electrofused mullite can be produced. The quality of high-purity electrofused mullite raw materials is the guarantee of the quality of the finished product.

    Performance of High-Purity Electrofused Mullite Castable Precast Refractory

    The main characteristic of high-purity electrofused mullite castable Precast Refractory is its excellent thermal shock resistance. Their thermal shock resistance is significantly better than that of other refractory materials. However, their compressive strength is not high, reaching only 51 MPa, while their thermal shock resistance is several times that of other refractory materials. This may be because the mullite crystal phase forms primary bonds at 850℃, producing a needle-like interstitial layer, which blocks the fracture layer that occurs within the Precast Refractory during surface water cooling tests. Therefore, high-purity electrofused mullite castable Precast Refractory can withstand thermal shock damage when used in steel rolling furnaces.

    How to Improve Thermal Shock Resistance in Corundum-Mullite Castables?

    Corundum-mullite castables are characterized by high load softening temperature and good creep resistance among high-temperature refractory materials. However, pure corundum products have a relatively large coefficient of thermal expansion, resulting in less than ideal thermal shock resistance. Pure mullite products, on the other hand, have a smaller coefficient of thermal expansion and better thermal shock resistance.

    Rongsheng Corundum Mullite Refractory Castable
    Rongsheng Corundum Mullite Refractory Castable

    Free Quote

      Free Quote

      Your Name (required)


      Your Email (required)

      Your Phone

      Required Products (required)

      Enquiry Information

      Corundum-mullite castables are composed of mullite and corundum phases. When the mass ratio of mullite to corundum is 75:25, it coincides with the eutectic melting point at 1840℃ in the SiO2-Al2O3 phase. Therefore, a mullite to corundum ratio of 75:25 is optimal for improving thermal shock resistance. This is because mullite has a lower coefficient of thermal expansion than corundum, and the coefficient of thermal expansion in composite materials is always greater for the former than the latter. The thermal expansion mismatch between mullite and corundum within the composite material leads to microcracks, increasing the material’s fracture absorption energy and thus improving the castable’s thermal shock resistance.

      Using a low eutectic point aggregate composition can negatively impact the creep resistance of castables, as the creep rate is minimized at this point. When the mullite to corundum ratio is approximately 75:25, the aggregate significantly affects the product’s coefficient of thermal expansion and thermal expansion mismatch. When microcracks develop in the castable, they propagate under thermal shock stress, simultaneously causing transgranular fracture of the aggregate and consuming a large amount of energy. This inhibits the propagation of the main crack and also affects the thermal shock stability of the corundum-mullite castable.

      Of course, corundum castables also exhibit good thermal shock resistance. This is because the different aggregate-to-binder ratios lead to variations in thermal shock stability. The coefficient of thermal expansion of corundum-mullite castables significantly impacts thermal shock stability; microcracks caused by thermal expansion mismatch can actually improve the castable’s thermal shock resistance.

      In summary, a mullite-to-corundum ratio of 75:25 in the process mix provides the best thermal shock stability. An apparent porosity of around 20% is highly beneficial for the thermal shock stability of castables. Therefore, controlling the apparent porosity of corundum-mullite castables to around 20% further enhances thermal shock stability.

      Rongsheng Refractory Materials Manufacturer offers environmentally friendly, professional, fully automated monolithic refractory material production lines, specializing in the production of integral refractory castable linings for high-temperature industrial furnaces. Our newly commissioned factory also specializes in producing various precast refractory components. If your industrial furnace requires lining material replacement or lining repair, Rongsheng’s professional technical team can customize a lining material solution based on the actual operating conditions of your industrial furnace. Contact Rongsheng for a free quote and solution.

        Get Free Quote

        Your Name (required)

        Your Email (required)

        Your Phone

        Required Products (required)

        Enquiry Information

        Refractory Configuration and Optimization for a 5000t/d Clinker Line (3)

        Refractory materials are developing towards environmental friendliness, strong adaptability, and long service life. Rongsheng Refractory Materials Factory supplies refractory materials for kilns used in 5,000 t/d clinker production lines. Rongsheng Refractory Materials Manufacturer leverages its innovative capabilities in refractory castables while focusing on customer needs, aiming to provide high-quality, long-life refractory lining materials for high-temperature industrial furnaces. Contact Rongsheng for free solutions.

        Refractory Lining Configuration for a 5,000 t/d Cement Clinker Production Line

        This article focuses on the refractory configuration for a 5,000 t/d cement clinker production line. The cement firing system involves a complex chemical process from raw meal to clinker, going through stages such as preheating in the preheater, decomposition in the calciner, high-temperature calcination, and cooling. The refractory materials used in each stage must be adapted to this process.

        Analysis of Certain Defects in the Current Configuration and Improvement Plans

        (1) Preheater System

        1. Severe scaling at the smoke chamber and precalciner necking, impacting ventilation.
          • Cause: The production line was designed to produce 5,000 tons per day, but actual production typically reached 5,500 tons, resulting in an overload of over 10%. This increased the kiln’s thermal load and the likelihood of scaling at the kiln tail. Furthermore, the increased use of anthracite and low-quality coal resulted in less than ideal combustion, increasing the likelihood of incomplete combustion and the rate of scaling. In short, scaling can be caused by a variety of factors, including operational factors, fuel, and raw material issues. In severe cases, it can lead to the cessation of rotary kiln operation.
          • Improvement Plan: In actual production, scaling at the kiln tail is not limited to the smoke chamber, but can sometimes extend to the precalciner necking and the fifth-stage drum discharge chute. Therefore, it is recommended to expand the scope of anti-scaling castables, such as using anti-scaling castables throughout the entire section below the fifth-stage drum discharge chute.
        Anti-Scaling Refractory Castable
        Anti-Scaling Refractory Castable

        Free Quote

          Free Quote

          Your Name (required)


          Your Email (required)

          Your Phone

          Required Products (required)

          Enquiry Information

          1. The castables on the top of the cyclone and decomposition furnace are prone to falling off, posing a production safety hazard.
            • Causes: Poor anchorage and welding quality, design flaws, and excessively rapid cooling can all cause the top castables to fall off, resulting in numerous fatalities on the production line.
            • Improvement Solution: Correct the design flaws, eliminate the calcium silicate board interposition, and use only lightweight castables. Use ceramic anchors and anchor bricks, etc.
          1. The kiln tail tongue is prone to damage.
            • Cause: Due to the erosion of high-temperature materials and corrosion from the kiln tail flue gas, the steel plate under the kiln tail tongue is easily damaged, which in turn damages the kiln tail tongue, significantly impacting kiln operation.
            • Improvement Solution: Use prefabricated components and eliminate the bottom steel plate to extend service life.
          1. Small-scale repairs are labor-intensive and time-consuming.
            • Cause: After two years of operation in a new kiln, some refractory materials in the preheater system may be partially damaged. Because the preheater is hollow, scaffolding must be erected during construction, which reduces maintenance time.
            • Improvement plan: Using spray paint for construction can save time and energy, and should be promoted vigorously.

          (2) Rotary Kiln System

          1. The kiln mouth castable is easily damaged, resulting in a long construction time.
            • Cause: Because the kiln mouth is prone to deformation, the castable is currently cast as a single piece. However, the casting cycle is long, and the baking time may be insufficient. As a result, the kiln mouth refractory cycle is significantly lower than that of other parts of the kiln.
            • Improvement: Using plastic castables eliminates the need for formwork, saving construction time. Curing and baking are unnecessary, making it suitable for routine maintenance.
          Magnesia Aluminum Spinel Bricks
          Magnesia Aluminum Spinel Bricks

          Free Quote

            Free Quote

            Your Name (required)


            Your Email (required)

            Your Phone

            Required Products (required)

            Enquiry Information

            1. Firing zone magnesia-chrome bricks does not meet environmental requirements.
              • Cause: Magnesia-chrome bricks react easily with sulfur in cement rotary kilns, generating some toxic hexavalent chromium ions, which can cause water pollution. Consequently, European countries have imposed very strict restrictions on the production and use of magnesia-chrome bricks.
              • Improvement: Using dolomite bricks, magnesia-iron spinel bricks, and magnesia-alumina spinel bricks.
            1. Spinel bricks have a large thermal conductivity, causing the kiln body temperature to rise.
              • Cause: Spinel bricks are currently used near the No. 2 wheel rim and have a good service life. However, their main drawback is their high thermal conductivity, which increases the drum temperature and poses a risk to kiln operation. This also results in significant heat loss.
              • Improvement: Use high-quality silica-molybdenum bricks.
            Rongsheng Silicon Carbide Mullite Bricks
            Rongsheng Silicon Carbide Mullite Bricks

            Free Quote

              Free Quote

              Your Name (required)


              Your Email (required)

              Your Phone

              Required Products (required)

              Enquiry Information

              (3) Short Burner Head Life

                • Cause: Due to the harsh operating environment of the coal injection pipe, such as large temperature differences, a thin refractory layer, a strong reducing atmosphere, and high-temperature radiation, the head has a short service life.
                • Improvement: The head is prefabricated and manufactured in advance, with adequate curing and baking, for optimal performance.

              (4) The top castable of the kiln hood is prone to partial detachment

              Cause: See the top of the preheater.

              (5) Cooler System

              1. Susceptible Wear of the Low Wall
                • Cause: The high-temperature clinker exiting the rotary kiln is directly rubbed against the low wall during cooling, and the alternating contact between hot and cold air causes rapid wear of the low wall.
                • Improvement: Use highly wear-resistant castables.
              1. Susceptible detachment of the top castable
                • Cause: See the top of the preheater.

              (6) Tertiary air duct bends are prone to wear.

                • Cause: The hot air from the kiln head cooler contains a large amount of clinker particles, which rub against the castable at the bend. Typically, castables only last three months.
                • Improvement: Use highly wear-resistant castables.

               

              (The end)

                Get Free Quote

                Your Name (required)

                Your Email (required)

                Your Phone

                Required Products (required)

                Enquiry Information

                Refractory Configuration and Optimization for a 5000t/d Clinker Line (2)

                Refractory materials are developing towards environmental friendliness, strong adaptability, and long service life. Rongsheng Refractory Materials Factory supplies refractory materials for kilns used in 5,000 t/d clinker production lines. Rongsheng Refractory Materials Manufacturer leverages its innovative capabilities in refractory castables while focusing on customer needs, aiming to provide high-quality, long-life refractory lining materials for high-temperature industrial furnaces. Contact Rongsheng for free solutions.

                Refractory Lining Configuration for a 5,000 t/d Cement Clinker Production Line

                This article focuses on the refractory configuration for a 5,000 t/d cement clinker production line. The cement firing system involves a complex chemical process from raw meal to clinker, going through stages such as preheating in the preheater, decomposition in the calciner, high-temperature calcination, and cooling. The refractory materials used in each stage must be adapted to this process.

                (3) Kiln Head Hood

                The kiln head hood connects the rotary kiln to the cooler and serves as the inlet for kiln air and tertiary air. Air pressure is extremely unstable, making positive pressure a common feature of the entire kiln system. Gas temperatures range from 800-1300°C, with significant temperature fluctuations. Furthermore, the impact of clinker particles is intense, making the top and inlet areas susceptible to damage. Therefore, thermal shock resistance and wear resistance should be considered when selecting materials.

                1. High-Alumina High-Strength Wear-Resistant Castable

                Amount: 180 tons

                Technical Performance:

                Application Location: Round top

                1. Calcium Silicate Board

                Amount: 7.2 tons

                Technical Performance: See above

                Application Location: All refractory linings

                (4) Burner

                Because the burner is located in the high-temperature gas between the kiln mouth and the cooler, and the pulverized coal burns near the burner head, it is significantly affected by the high-temperature radiation and reducing atmosphere. The chemical composition of coal significantly influences combustion, making the burner head plate susceptible to damage. The refractory material used in this area requires high refractoriness and wear resistance, as well as enhanced thermal shock stability and spalling resistance.

                RS Mullite Castable Manufacturer
                RS Mullite Castable Manufacturer

                Free Quote

                  Free Quote

                  Your Name (required)


                  Your Email (required)

                  Your Phone

                  Required Products (required)

                  Enquiry Information

                  1. Mullite Castable

                  Quantity: 5 tons

                  Technical Performance:

                  Application Area: Burner head hood where it enters the kiln

                  (5) Rotary Kiln

                  As a rotating drum that calcines raw materials into clinker at high temperatures, the lifespan of its refractory materials often determines the production cycle, making it a key and challenging aspect of refractory material management in cement plants. After preheating and approximately 90% decomposition, the raw material enters the kiln from the kiln outlet, where its temperature gradually rises to over 1450°C, completing the calcination process and entering the cooler. A 74-meter rotary kiln can be broadly divided into five thermal stages. Because the refractory materials within the rotary kiln must be fixed to the continuously rotating drum, the strength of the refractory bricks must not fall below a certain threshold due to the following factors:

                  1. There is a certain degree of slippage or sliding tendency between the refractory bricks and the shell, generating friction. The refractory bricks must possess a certain strength to resist damage from this friction.
                  2. A rotary kiln is not an absolutely rigid structure when viewed axially. Because the rotary kiln drum has a certain curvature between its support points, it experiences periodic bending in sync with its rotation during operation. Because the three-roller rotary kiln utilizes a statically indeterminate structure, the different expansion rates of each roller group due to temperature differences can cause deviations in the kiln shell’s coaxiality, generating significant additional loads. Furthermore, the 4% inclination of the kiln shell also generates downward stress during rotation.
                  3. The shell is not a perfect circle in the radial direction, but rather an elliptical shape. Deformation is greatest at the wheel belts, and this deformation places additional pressure on the refractory bricks. Due to the kiln’s own weight and rotation, the kiln undergoes periodic elliptical deformation, synchronized with the rotation, placing alternating loads on the refractory bricks. When this deformation or elliptical deformation reaches a certain value, it can exceed the internal stresses in the refractory bricks, causing premature failure. Therefore, refractory materials with insufficient strength must be used in rotary kilns; they must meet basic strength requirements.
                  4. In addition to the aforementioned mechanical stresses, the refractory materials within the kiln are also subject to the effects of high-temperature gases and liquid clinker. It can be roughly divided into five or six working zones, which require different refractory materials for laying.

                  Refractory Configuration for a 5,000-ton Rotary Kiln:

                  1. Mullite Castable

                  Usage: 15 tons

                  Technical Performance: See above (RT-70MC)

                  Applicable Area: 0-0.6 m

                  1. High-Abrasion-Resistant Bricks

                  Usage: 8 tons

                  Technical Performance:

                  Applicable Area: 0.6-1.6 m

                  RS Direct Bonded Magnesia Chrome Bricks
                  RS Direct Bonded Magnesia Chrome Bricks

                  Free Quote

                    Free Quote

                    Your Name (required)


                    Your Email (required)

                    Your Phone

                    Required Products (required)

                    Enquiry Information

                    1. Direct-Bonded Magnesia-Chrome Bricks

                    Usage: 340 tons

                    Technical Performance:

                    Applicable Area: 1.6-25 m/35-45 m

                    Spinel Refractory Bricks
                    Spinel Refractory Bricks

                    Free Quote

                      Free Quote

                      Your Name (required)


                      Your Email (required)

                      Your Phone

                      Required Products (required)

                      Enquiry Information

                      1. Spinel Bricks

                      Usage: 99 tons

                      Applicable Area: 25-35 m

                      1. Anti-Spalling Bricks

                      Usage: 242 tons

                      Applicable Area: 45-73.2 m

                      1. High-Alumina Castables

                      Usage: 8.5 tons

                      Technical Performance: See above

                      Applicable Area: 73.2-74 m

                      (6) Cooler

                      The cooler uses air to cool the hot clinker leaving the kiln from 1400°C to below 80°C. Due to the large temperature difference between the front and rear sections, the most vulnerable parts are concentrated in the front wall and the lower wall. Furthermore, the overhanging beams at the interface with the kiln head are also susceptible to premature damage due to the erosion of high-temperature gases.

                      Grate coolers are stationary relative to the refractory shell, so insulation materials with low strength but low thermal conductivity can be used on the outer layer. The cooler’s inner surface must withstand thermal erosion and high-temperature abrasion caused by contact with high-temperature clinker at 300-1450°C, so the selected refractory materials must have strong wear resistance. Furthermore, the first stage cooler must also withstand high thermal loads.

                      Because the grate cooler has large vertical walls, the use of special anchoring refractory bricks is crucial when constructing the refractory brickwork to strengthen the connection between the bricks and the shell to prevent collapse of the vertical walls.

                      Currently, the most commonly used refractory castables are:

                      1. High-strength alkali-resistant castable

                      Usage: 20 tons

                      Technical properties: See above (RT-13NL)

                      Application: Section 3 and top

                      1. High-alumina castable

                      Usage: 106 tons

                      Technical properties: See above (RT-16)

                      Application: Section 2 and 3 side walls and parapet

                      1. High-heat high-alumina castable

                      Usage: 183 tons

                      Application: Cooler front wall and Section 1 parapet

                       

                      (To be continued…3)

                        Get Free Quote

                        Your Name (required)

                        Your Email (required)

                        Your Phone

                        Required Products (required)

                        Enquiry Information

                        Refractory Configuration and Optimization for a 5000t/d Clinker Line (1)

                        Refractory materials are developing towards environmental friendliness, strong adaptability, and long service life. Rongsheng Refractory Materials Factory supplies refractory materials for kilns used in 5,000 t/d clinker production lines. Rongsheng Refractory Materials Manufacturer leverages its innovative capabilities in refractory castables while focusing on customer needs, aiming to provide high-quality, long-life refractory lining materials for high-temperature industrial furnaces. Contact Rongsheng for free solutions.

                        Refractory Lining Configuration for a 5,000 t/d Cement Clinker Production Line

                        This article focuses on the refractory configuration for a 5,000 t/d cement clinker production line. The cement firing system involves a complex chemical process from raw meal to clinker, going through stages such as preheating in the preheater, decomposition in the calciner, high-temperature calcination, and cooling. The refractory materials used in each stage must be adapted to this process.

                        (1) Preheater System

                        This system utilizes kiln exhaust gas to gradually heat the raw meal from ambient temperature in a suspended state to above 750°C before entering the precalciner system for decomposition. The amount of refractory material used in this system accounts for nearly two-thirds of the total refractory material used. Its thermal characteristics are:

                        1. 60% of the fuel and the preheated raw meal are thoroughly mixed in the precalciner for flameless combustion. Wall and flue gas temperatures are generally controlled below 1000°C. The temperatures of the other cyclones, from the first to the fifth stage, are not higher than 450°C, 650°C, 750°C, 900°C, 1000°C, and 1100°C, respectively.
                        2. The preheater system calcines the material with virtually no liquid phase, resulting in minimal agglomeration and sintering, and therefore requires less refractoriness. Furthermore, the overall system temperature is relatively stable, requiring less thermal shock resistance from the refractory material.
                        3. The preheater system is a stationary device, but its size is relatively large, requiring insulation materials with low thermal conductivity to reduce the outer shell temperature.
                        4. Due to the complex shape of the preheater system, including cones, cyclone inlet and outlet diameter changes, thin feed pipes, and numerous measuring holes, it is more convenient to use on-site formed refractory castables in these areas.
                        5. When using raw materials and fuels with high alkali content, the refractory materials in the preheater must withstand not only high-temperature corrosion but also chemical attack from alkali metal oxides.

                        The aforementioned thermal environment generally determines the configuration of refractory materials for each stage of the preheater, and the following principles should be followed:

                        1. Refractory materials with low thermal conductivity, good insulation, and a working surface with sufficient strength and resistance to alkali corrosion should be used.
                        2. Castables should be used for sections with complex shapes and a large number of thin pipes, while alkali-resistant bricks should be used for straight tubes and regular sections.
                        3. Different materials should be designed for different sections based on the different temperatures of the cyclones and to save costs. For example, for the first and second stage cyclones, a combination of refractory and insulation considerations can be considered, and clay-based alkali-resistant refractory materials can be selected. For preheaters below the third stage, alkali-resistant materials capable of temperatures exceeding 1100°C should be used.
                        4. Anti-scaling castables should be used for the refractory castables from the fifth stage to the smoke chamber and below the calciner, as the surface is prone to scaling.

                        The following is a brief introduction to the selection and dosage of refractory materials for the preheater of a 5000t/d production line:

                        Alkali Resistant Bricks for Rotary Kiln
                        Alkali-Resistant Bricks for Rotary Kiln

                        Free Quote

                          Free Quote

                          Your Name (required)


                          Your Email (required)

                          Your Phone

                          Required Products (required)

                          Enquiry Information

                          1. RK-H High-Strength Alkali-Resistant Bricks

                          Quantity: 569 tons

                          Performance:

                          Application Areas: Vertical ascending flues, cyclone tubes, and cones

                          High-Strength Alkali Resistant Castable
                          High-Strength Alkali-Resistant Castable

                          Free Quote

                            Free Quote

                            Your Name (required)


                            Your Email (required)

                            Your Phone

                            Required Products (required)

                            Enquiry Information

                            1. High-strength alkali-resistant castable

                            Usage: 850 tons

                            Performance:

                            Construction method:

                            Application: Tops of preheater stages 1-4, irregular shapes, etc.

                            RS High-Alumina Low-Cement Castable
                            RS High-Alumina Low-Cement Castable

                            Free Quote

                              Free Quote

                              Your Name (required)


                              Your Email (required)

                              Your Phone

                              Required Products (required)

                              Enquiry Information

                              1. High-alumina low-cement castable

                              Usage: 200 tons

                              Performance:

                              Application: Precalciner, fifth-stage drum

                              1. Anti-scaling castable

                              Usage: 112 tons

                              Performance:

                              Application Area: Kiln tail flue chamber

                              1. Calcium Silicate Board

                              Consumables: 156 tons

                              Performance:

                              Application area: All refractory linings

                              (2) Tertiary Air Ducts

                              Tertiary air ducts utilize high-temperature, oxygen-rich gases from the kiln head to guide the ducting channels of the precalciner. At temperatures of 800-900°C, these gases contain a large amount of clinker particles, which can severely erode and wear the refractory materials at the bends. Therefore, the system’s alkali resistance and wear resistance must be considered. High-strength alkali-resistant bricks and calcium silicate board are used in the straight sections, while high-wear-resistant castables and calcium silicate board are used in the irregular sections.

                              Currently, two types of tertiary air ducts are used: parallel ducts and V-shaped ducts. Parallel ducts are arranged almost parallel to the kiln, while V-shaped ducts are V-shaped, with a settling chamber and discharge gate valve located at the lower end of the duct.

                              Parallel ducts are simple in design, aesthetically pleasing, and require minimal investment. However, to prevent clinker particles from settling in the tertiary duct, higher operating air velocities are required, resulting in greater resistance in the tertiary duct. This higher air velocity also requires higher wear resistance from the refractory materials. The V-type duct is more complicated and requires a large investment. It also requires regular dust discharge from the discharge gate valve. However, the V-type duct can adopt a lower operating wind speed, so the system resistance is low, and the wind speed wear is small.

                              The refractory material usage and performance requirements are as follows:

                              1. RK-H High-Strength Alkali-Resistant Bricks

                              Usage: 140 tons

                              Performance: See above

                              Application: Straight sections of air ducts

                              1. Ultra-High-Strength Wear-Resistant Castable

                              Usage: 70 tons

                              Performance:

                              Application Area: Tertiary duct bends and gates

                              1. Calcium Silicate Board

                              Consumables: 17 tons

                              Performance: See above

                              Application Area: All refractory linings

                               

                              ( To be continued…2)

                                Get Free Quote

                                Your Name (required)

                                Your Email (required)

                                Your Phone

                                Required Products (required)

                                Enquiry Information

                                Suitable for Aluminum Alloy Smelting – Unshaped Refractories Medium Temperature Low Cement Castable

                                The aluminum alloy melting process poses unique and demanding challenges to refractory materials, stemming from the physical and chemical properties of molten aluminum and its alloys. While the combustion chamber of an aluminum melting furnace can reach temperatures of approximately 1200°C, the furnace chamber area in direct contact with the molten aluminum typically only reaches temperatures of 700-800°C (the casting temperature for 6063 aluminum alloy is 720-740°C).

                                This means that the furnace lining material spends most of its time in a medium-temperature range, rather than a traditionally high-temperature state. In this temperature range, traditional refractories often experience a strength dip due to bonding phase transitions. For example, hydration products (such as CAH₁₀ and C₂AH₈) in cement-bonded Unshaped Refractories Castables begin to dehydrate at 300-400°C, losing their bonding properties while the ceramic bond is not yet fully formed, resulting in a significant drop in strength.

                                Rongsheng Low Cement Castable for Sale
                                Rongsheng Low-Cement Castable for Sale

                                Free Quote

                                  Free Quote

                                  Your Name (required)


                                  Your Email (required)

                                  Your Phone

                                  Required Products (required)

                                  Enquiry Information

                                  Low-Cement Castables: Medium- and Low-Temperature Strength Properties

                                  Low-cement castables exhibit unique strength properties in the medium- and low-temperature ranges, distinct from conventional castables. During heating, conventional aluminate cement unshaped refractories castables typically experience a decrease in strength (due to hydrate dehydration) followed by an increase (due to ceramic bonding), with a distinct strength dip occurring in the 800-1000°C range. Low-cement refractory castables, however, exhibit a significant increase in strength at medium temperatures, rather than a decrease in strength.

                                  The research examples in the table below demonstrate that the hot flexural strength of low-cement castables at 800°C is significantly higher than that at room temperature. Low-cement castables made primarily of kyanite-mullite (M45 and M60) exhibit the greatest increase in hot flexural strength with increasing treatment temperature. Low-cement castables made primarily of high-alumina bauxite (M85) exhibit the second-highest increase. Conventional Unshaped Refractories castables using CA-50 cement as a binder exhibit a distinct strength dip after firing at 800°C.

                                  Table: Changes in hot flexural strength after treatment at different temperatures (MPa)

                                  Castable Sample TypeDry at 110℃After Sintering at 800℃After Sintering at 1000℃After Sintering at 1200℃Strength Growth Characteristics
                                  M458.510.212.815.3Sustained and stable growth
                                  M609.211.514.217.6Significant increase in medium temperature strength
                                  M8510.712.314.918.2High initial strength and stable growth
                                  Traditional  CA-5011.28.510.313.7The medium temperature strength decreased significantly

                                  The mechanism of this anomaly is that the dehydration of calcium aluminate hydrate in low-cement castables is slow and continuous, with minimal damage to the crystal structure. Simultaneously, the ultrafine powder begins to sinter at moderate temperatures, forming a preliminary ceramic bond.

                                  Core Characteristics and Advantages of Low-Cement Castables

                                  Low-Cement Castables (LCC) are a new generation of unshaped refractory materials developed in the 1980s. Compared to traditional aluminate cement Unshaped Refractories castables, their core characteristic lies in a significant reduction in the amount of calcium cement (typically from 12-20% to 3-8%). Furthermore, through the introduction of ultrafine powder technology and high-efficiency admixtures, they achieve a comprehensive performance optimization of high density, low porosity, and high strength.

                                  The revolutionary breakthrough in low-cement castables stems from the application of ultrafine powder technology. Ultrafine powders (such as reactive SiO₂ powder and α-Al₂O₃ powder) with particle sizes less than 1.0μm can exceed 71%. These ultrafine particles possess an extremely high specific surface area and reactivity, effectively filling the gaps between aggregate particles and achieving the densest packing. It prevents particle size segregation, reduces porosity and pore diameter, ensures the fluidity of the mixture, and improves the density and bonding strength of the Unshaped Refractories castable. More importantly, the high specific surface area and reactivity of ultrafine powder significantly reduce sintering temperatures and promote sintering at medium and low temperatures.

                                  Active SiO₂ ultrafine powder not only improves the fluidity of the castable but is also one of the most effective sintering accelerators. At temperatures above 900°C, SiO₂ ultrafine powder reacts with Al₂O₃ to form mullite (3Al₂O₃·2SiO₂), accompanied by a volume expansion of approximately 10.5%. This volume effect effectively offsets some of the volume shrinkage of the unshaped refractory castable, promoting strength improvement. Furthermore, the mullite phase forms at a relatively low temperature (beginning to form in large quantities at approximately 1000°C), and its needle-shaped or columnar crystal structure forms a cross-linked skeleton, significantly enhancing the material’s strength.

                                  Ultrafine α-Al₂O₃ powder strengthens the material through a different mechanism. It promotes the formation of calcium hexaaluminate (CA₆) from calcium aluminate at high temperatures, along with smaller amounts of mullite, anorthite, CA, and CA₂. These minerals have large molar volumes, which prevent volume shrinkage. Furthermore, CA₆ crystals are small columnar and needle-shaped, while anorthite crystals are fine columnar. Together, they form a cross-linked structure of fine columnar and needle-shaped structures, resulting in a strong and dense structure that can reach strengths of around 100 MPa.

                                  The setting and hardening mechanism of low-cement castables is also fundamentally different from that of traditional Unshaped Refractories castables. Traditional castables primarily derive their strength from hydration products (such as CAH₁₀ and C₂AH₈) produced by cement hydration. However, these hydrates dehydrate and decompose during heating, significantly reducing their strength at medium temperatures. Low-cement castables, on the other hand, rely primarily on a cohesive bonding mechanism: ultrafine powder particles form colloidal particles in water, which form a three-dimensional network structure through van der Waals forces and chemical bonds, tightly binding the aggregate particles together. Cement acts only as a delayed-acting setting accelerator. This cohesive mechanism ensures that the strength of low-cement castables does not decrease due to hydrate decomposition during heating, but instead continues to increase due to sintering.

                                  By carefully controlling the type, particle size distribution, and additive amount of fine powder, low-cement castables achieve an ideal strength development curve within the operating temperature range of aluminum alloy smelting (700-900°C). This avoids the mid-temperature strength trough common in traditional Unshaped Refractories castables while providing sufficient high-temperature performance, perfectly adapting to the unique operating conditions of aluminum melting furnaces.

                                  However, there are downsides. Low porosity and high densification also result in poor air permeability. During baking and heating, steam generated by internal moisture cannot be promptly dissipated, easily building up high pressure within the lining, causing it to spall or crack. Therefore, when using low-cement castables, a reasonable baking system and the addition of explosion-proof agents must be used.

                                  Conclusion

                                  From the “medium-temperature dilemma” of traditional Unshaped Refractories castables to the “precise breakthrough” of low-cement castables, the path to upgrading refractory materials is essentially a matter of precisely matching material properties with operating requirements. For the unique application of aluminum alloy smelting, low-cement castables restructure their strength formation mechanism through ultrafine powder technology. This not only addresses the strength limitations of the medium-temperature range, but also addresses the core requirements of high density and corrosion resistance. This makes them a key material support for the longevity and high efficiency of aluminum industry furnaces.

                                    Get Free Quote

                                    Your Name (required)

                                    Your Email (required)

                                    Your Phone

                                    Required Products (required)

                                    Enquiry Information

                                    How to Improve the Performance Parameters of Zirconium Corundum AZS Bricks?

                                    AZS Bricks, abbreviated as zirconia, are primarily composed of alumina and zirconium oxide, with small amounts of other additives. Their high alumina content and the addition of zirconium oxide impart unique properties. For example, a typical zirconia brick may contain approximately 70% alumina and 30% zirconium oxide. It may also contain trace amounts of additives such as borax and silica sol to improve sintering performance.

                                    AZS Bricks for Glass Kiln
                                    AZS Bricks for Glass Kiln

                                    Free Quote

                                      Free Quote

                                      Your Name (required)


                                      Your Email (required)

                                      Your Phone

                                      Required Products (required)

                                      Enquiry Information

                                      Zirconium-aluminum bricks are primarily used in glass industry tank furnaces, including key areas such as the tank walls, vents, superstructures, hanging walls, and breast walls. In glass furnaces, zirconia-aluminum bricks can withstand temperatures exceeding 1600°C and the corrosive effects of molten glass, ensuring proper furnace operation and high-quality glass production. They are also used in high-temperature industries such as steel smelting furnaces, cement rotary kilns, and non-ferrous metal smelting.

                                      Improving the Performance Parameters of Zirconia-Corundum Bricks

                                      To maximize the performance parameters of Zirconia-Corundum bricks, various performance-enhancing additives are added during production. Nanomaterials exhibit unique size and surface effects, and the introduction of nanoscale additives into Zirconia-Corundum bricks can improve their performance. For example, the addition of nanoparticles such as nanoalumina and nanozirconia can form finer dispersions within the brick, hindering crack propagation and increasing the brick’s toughness and strength. Furthermore, these nanoadditives can synergize with the original components of Zirconia-Corundum bricks to enhance their thermal shock resistance and erosion resistance.

                                      However, due to its high specific surface area and surface energy, nanoalumina is prone to agglomeration. If dispersion issues are not effectively addressed during production, agglomerated nanoalumina particles can form localized defects within the Zirconia-Corundum brick, reducing its overall performance. For example, agglomerates can become stress concentration points, making cracks more likely to form during use, impacting the brick’s strength and durability.

                                      By modifying the nano-alumina, a carbon nanotube core-shell structure is grown in situ on the surface. This core-shell structure prevents direct contact between nano-alumina particles, thereby reducing the possibility of nano-alumina agglomeration. This allows the nano-alumina to be evenly distributed within the corundum monolithic refractory brick, forming a finer dispersed phase within the brick, hindering crack propagation and improving the brick’s toughness and strength.

                                      AZS Refractory Bricks (250 x 124 x 64-mm)
                                      AZS Refractory Bricks (250 x 124 x 64-mm)

                                      Free Quote

                                        Free Quote

                                        Your Name (required)


                                        Your Email (required)

                                        Your Phone

                                        Required Products (required)

                                        Enquiry Information

                                        The technical solution is as follows:

                                        Materials: 55-65 parts alumina powder, 25-35 parts zircon sand, 1-5 parts modified nano-alumina powder, 2-6 parts binder, 1-2 parts chromium oxide, 1-3 parts yttrium oxide, and 1-4 parts flux.

                                        The alumina powder has a particle size of 1-1.5 mm and a purity >99%.

                                        The zircon sand contains 65% zirconium oxide and 34% silicon dioxide, with a particle size of 0.05-2 mm.

                                        The modified nano-alumina powder is nano-alumina modified with in-situ carbon nanotubes. A carbon nanotube core-shell structure is grown on the surface of the modified nano-alumina.

                                        The binder is silica sol. The silica content is approximately 40%, the iron content is <0.01%, the sodium oxide content is <0.5%, the viscosity is 10-20 mPa·s, and the particle size is 20-70 nm.

                                        The flux is borax with a purity of >95%, an iron content of ≤0.005%, and a particle size of 0.15mm.

                                        The production steps are as follows:

                                        Ingredients: Add alumina powder, zircon sand, modified nano-alumina powder, binder, chromium oxide, yttrium oxide, and flux to a mixer in the correct proportions.

                                        Mixing: Stir the ingredients in the mixer at a speed of 120-180 rpm for 90-120 minutes to ensure thorough mixing.

                                        Molding: The mixed ingredients are placed into a mold and molded using a friction press or hydraulic press. The molding pressure is 150-220 MPa, and the holding time is 30-90 seconds, until the bricks reach the desired shape.

                                        Drying: The molded bricks are placed in a drying oven along with the mold to dry and remove moisture. The drying temperature is 110-140°C, and the drying time is 24-72 hours.

                                        Sintering: The dried bricks are placed in an insulated sand box along with the mold and then sintered in a high-temperature kiln at a temperature of 1650-1800°C. The heating rate is 3-5°C/min, and the holding time is 4-8 hours.

                                        Annealing: After the sintered zirconium-alumina refractory bricks and the mold are removed from the insulating flask, the mold is removed. The zirconium-alumina refractory bricks are placed back into the insulating flask for annealing for 24-48 hours. The cooling rate is 2-4°C/min.

                                        Advantages: Nanomaterial modification technology and optimized production processes not only address the problem of nanoparticle agglomeration but also significantly improve the overall performance of the bricks, making them more suitable for high-temperature and highly corrosive working environments. The resulting zirconium-alumina refractory bricks offer high quality, a high forming rate, stable internal stress distribution, and resistance to high temperatures and corrosion.

                                        Differences in Application Between Fused AZS and Fused Corundum Bricks

                                        In float glass furnace design, the optimal combination is determined based on glass quality requirements, furnace service life, refractory properties, and cost. Different refractory types are used in different areas. Parts in contact with the molten glass, such as the tank walls and bottom, have a significant impact on furnace life and glass quality, and therefore require more stringent selection criteria.

                                        With improvements in refractory quality and performance, and increasing demands for furnace lifecycles, fused AZS bricks are currently used for both the melting tank walls and bottom, as well as the neck tank walls and bottom. This is primarily to address chemical erosion caused by batch reactions and erosion from high-temperature molten glass. Fused AZS offers superior high-temperature erosion resistance compared to other refractory materials.

                                        33# oxidation-process fused zirconia-corundum bricks can be used for the cooling tank walls and bottom, but high-quality float glass production lines typically use α-β fused corundum bricks, primarily for glass quality considerations. α-β fused corundum bricks have low porosity and exhibit excellent corrosion resistance at the 1350°C operating temperature of the cooling section, without any glassy phase precipitation. However, fused AZS bricks, due to their high content of SiO2 and alkaline oxides, are prone to glassy phase precipitation, and this volume change can lead to the formation of bubbles. Furthermore, after the zirconium corundum is dissolved by the molten glass, the corrosion-resistant ZrO2 material remains, forming microscopic dendrites. Discharge at the tip triggers an electrochemical reaction, ionizing and reducing the gas components in the glass to form bubbles. Therefore, based on glass quality requirements, kiln runner designs generally use α-β fused corundum bricks for the cooling section walls and floor paving.

                                        RS AZS Refractory Bricks Manufacturer
                                        RS AZS Refractory Bricks Manufacturer

                                        Free Quote

                                          Free Quote

                                          Your Name (required)


                                          Your Email (required)

                                          Your Phone

                                          Required Products (required)

                                          Enquiry Information

                                          Applications of Fused AZS Bricks and Fused Corundum Bricks

                                          1. Fused Zirconia Corundum

                                          Grades include: AZS-33 (33% ZrO₂ content), AZS-36 (36% ZrO₂ content), and AZS-41 (41% ZrO₂ content).

                                          The erosion resistance of fused zirconium corundum increases with increasing ZrO₂ content. 33# fused AZS bricks are suitable for the melting pool walls and the breast wall of the material processing area. Corners of the pool walls are more susceptible to erosion by the molten glass, so 36# fused AZS bricks or 41# AZS bricks with higher ZrO₂ content are the best choices.

                                          The production process for fused zirconium corundum is divided into reduction and oxidation methods. Currently, the oxidation method is the primary shrinkage-free casting process. The oxidation melting method eliminates contamination caused by graphite electrodes in the melt, has a low carbon content, and can reduce the bubble content in the glass.

                                          1. α-β Fused Corundum Bricks

                                          Al2O3 content >98%. Made from high-purity alumina with a small amount of soda ash, it is melted at 2000-2200°C and produced using a shrinkage-free casting method.

                                          The thermal expansion coefficient of fused corundum is 8.6, placing it in the lower-to-medium range for thermal shock resistance. Fused corundum bricks exhibit slightly poor high-temperature corrosion resistance, with resistance to molten glass decreasing rapidly at temperatures above 1600°C. However, at operating temperatures of 1350°C and below, they exhibit strong corrosion resistance and virtually no contamination of the molten glass. They are ideal materials for the cooling tank walls and floors of glass melting furnaces, as well as for float glass launders.

                                            Get Free Quote

                                            Your Name (required)

                                            Your Email (required)

                                            Your Phone

                                            Required Products (required)

                                            Enquiry Information

                                            Alumina Bricks Properties

                                            Different types of alumina bricks (such as β-alumina bricks and hollow alumina sphere bricks) may differ in their specific properties. For example, β-alumina bricks offer better resistance to alkali vapor corrosion, while hollow alumina sphere bricks excel at being lightweight and providing excellent thermal insulation. RS Alumina Bricks Manufacturer supplies high-quality alumina bricks. Contact RS Factory for free samples and quotes.

                                            α-β Alumina Bricks
                                            α-β Alumina Bricks from RS Factory

                                            Free Quote

                                              Free Quote

                                              Your Name (required)


                                              Your Email (required)

                                              Your Phone

                                              Required Products (required)

                                              Enquiry Information

                                              Alumina Bricks Have the Following Properties

                                              High-Temperature Resistance

                                              Alumina bricks typically have a refractoriness exceeding 1900°C, maintaining stable physical and chemical properties in high-temperature environments. They are suitable for use in high-temperature industrial furnaces and melting furnaces, where they can withstand long-term high temperatures without deformation or damage.

                                              High Mechanical Strength

                                              They possess high compressive and flexural strengths, reaching approximately 250 MPa at room temperature and maintaining a strength of approximately 150 MPa at 1000°C. They can withstand mechanical and thermal stresses at high temperatures.

                                              Good Chemical Stability

                                              They are chemically stable and highly resistant to corrosion from acids, alkalis, salts, and other chemicals, especially at high temperatures. They are particularly resistant to corrosion from a variety of molten metals and chemicals. They are suitable for applications in chemical and metallurgical industries, where corrosion resistance is critical.

                                              Low Thermal Conductivity

                                              With low thermal conductivity, they offer excellent thermal insulation properties, effectively reducing heat transfer and lowering energy consumption. They are often used as insulation layers in high-temperature furnaces to improve energy efficiency.

                                              Thermal Shock Resistance

                                              High thermal shock resistance allows it to withstand rapid temperature changes without cracking or damage. Suitable for equipment subject to frequent startups and shutdowns or large temperature fluctuations.

                                              High Purity and Low Impurity Content

                                              High-purity alumina bricks (e.g., Al₂O₃ content ≥98%) have low impurity content and greater chemical stability, making them more resistant to chemical reactions and corrosion at high temperatures.

                                              Good Electrical Insulation

                                              With excellent electrical insulation properties, they can be used in the manufacture of high-temperature electrical insulation components, such as spark plug insulators and electronic component substrates.

                                              Why are Alumina Ceramics Both Insulators and Conductors?

                                              Common sense suggests that thermal insulation and thermal conductivity should be two distinct entities. For example, cotton is insulating and can be made into cotton-padded clothes, while iron is conductive and can be used in frying pans. The reverse is not true. However, in the real world of refractory materials, we see a different phenomenon: the same material can be used for seemingly opposite purposes: insulation and thermal conductivity. This is the case with alumina ceramics. Alumina ceramics can be made into insulating bricks for high-temperature kilns and heat sinks for electronic products like LED lights.

                                              To answer this question, we need to consider two aspects.

                                              First, as the question above suggests, the thermal conductivity of materials does vary. The most typical example is the difference in thermal conductivity at different temperatures. Take alumina, for example. As the temperature rises, its thermal conductivity decreases. At 1200°C, its thermal conductivity is only about half that at 400°C. However, alumina’s thermal conductivity is not insignificant: at room temperature, it’s 20-30 W/m•K. Even if this decreases by more than half, it still leaves about 10 W/m•K, which is higher than the thermal conductivity of many materials. Therefore, this small change seems insufficient to explain why alumina can both insulate and conduct heat. A more convincing explanation is needed.

                                              Therefore, we need to consider the second, and most important, aspect. Alumina’s ability to both insulate and conduct heat stems from structural changes. In other words, the internal structure of alumina ceramic differs when used as an insulator and a conductor.

                                              alumina bubble bricks
                                              RS Alumina Bubble Bricks

                                              Free Quote

                                                Free Quote

                                                Your Name (required)


                                                Your Email (required)

                                                Your Phone

                                                Required Products (required)

                                                Enquiry Information

                                                When used as an insulator, alumina ceramic’s most significant structural characteristics are its porosity and low density. For example, when made into hollow alumina sphere bricks, the thermal conductivity of air is very low, and so is the thermal conductivity of hollow alumina sphere bricks. Some may ask, since air has a very low thermal conductivity, why bother incorporating air into the alumina material? This is because, while air has a low thermal conductivity, it cannot prevent thermal radiation. Just as the thermal conductivity of a vacuum is zero, heat from the sun still travels through it to Earth. Porous alumina blocks both heat conduction and radiation, effectively providing insulation and heat preservation. For example, a study reported that a type of alumina microporous ceramic has a density of only 0.6g/cm3, a porosity of 85%, and a thermal conductivity of only about 0.3W/m•K at 1200℃.

                                                However, when alumina is made into thermally conductive ceramics, the requirements are completely different. The first requirement is high density—the higher the better. High density reduces pores, allowing the ceramic grains to bond tightly together, facilitating heat conduction. The second requirement is high purity. The higher the purity, the higher the thermal conductivity. For example, a ceramic with a 99% alumina content can achieve a thermal conductivity of ~26 W/m•K, while when the alumina content drops to 95%, the thermal conductivity drops to only ~20 W/m•K. This is because ceramics with low alumina content have a higher glass content, and glass has lower thermal conductivity, resulting in a lower overall thermal conductivity. Of course, cost is also a factor in practical applications. While high-purity alumina ceramics offer high thermal conductivity, they also come at a higher price. Therefore, alumina ceramics should be selected based on the product’s requirements, rather than simply pursuing high purity.

                                                In addition to high purity and a dense structure, alumina ceramics used as heat sinks often have specific requirements for their external shape. For example, when making an LED heat sink, it often has a fin structure to increase the surface area and facilitate heat dissipation into the air, thereby achieving better heat dissipation effects.

                                                  Get Free Quote

                                                  Your Name (required)

                                                  Your Email (required)

                                                  Your Phone

                                                  Required Products (required)

                                                  Enquiry Information

                                                  Problems Encountered in the Production of Refractory Precast Shapes and Solutions

                                                  Refractory precast shapes offer advantages such as convenient and fast on-site construction and a long service life, making them increasingly popular in high-temperature industrial furnaces. The production process for refractory precast shapes is relatively simple, essentially following a series of steps including batching, mixing, molding, and drying. However, production often presents challenges. Rongsheng Refractory Factory has identified several solutions for these common production issues.

                                                  Pulverization of Impurities in Bauxite Clinker

                                                  Bauxite clinker is a commonly used refractory raw material, and its quality significantly impacts the performance of refractory products. Bauxite clinker, also known as bauxite clinker, is produced by high-temperature calcination of bauxite ore. Its Al2O3 content should be greater than 50%. The impurity content in the product should not exceed 2%, and foreign inclusions such as limestone, loess, and high-calcium and high-iron materials must be avoided. Due to the geological distribution of raw bauxite, it is often associated with limestone and loess. Inadequate post-calcination sorting can lead to the inclusion of impurities such as limestone in the bauxite clinker. Once used in refractory prefabricated parts, the limestone can pulverize during the mixing, forming, drying, firing, and final use, resulting in localized pitting defects. This can affect not only the product’s appearance but also its internal quality. Therefore, before using bauxite clinker, it is necessary to test its pulverization rate. The method used is to take a weight of M1 of bauxite clinker particles (particle size + 3 mm) and immerse them in water for a period of time. The material is then dried at 110°C and passed through a 3 mm sieve. The weight of the particles above the sieve is M2. The pulverization rate can be expressed as:

                                                  Pulverization rate (%) = (M1 – M2) / M1 × 100%

                                                  A pulverization rate of no more than 0.20% is recommended. If the measured pulverization rate is too high, pretreatment of the raw material is necessary to ensure product quality. This can be achieved by soaking it in water, drying it, and screening it before use.

                                                  Pulverization of Brown Corundum

                                                  Corundum is increasingly being used as refractory aggregate and powder in monolithic refractories, achieving significant results. Corundum is generally produced from industrial alumina or bauxite through sintering or electric melting. It includes white corundum, sub-white corundum, tabular corundum, high-aluminum corundum, and brown corundum. Brown corundum is produced using electric melting, using light-burned high-aluminum material, coal, and iron scrap as its primary raw materials. The smelting process is divided into two types: shelling furnace and pouring furnace. Shelling furnaces produce material with significantly different crystallinity levels in different parts, and the iron distribution is also wider. Brown corundum produced in pouring furnaces offers uniform quality and good bulk density. However, this uniformity requires less grading, and overall performance may be slightly lower. Based on practical experience, brown corundum produced in shelling furnaces has a much higher probability of pulverization than that produced in pouring furnaces. Using brown corundum with a high pulverization rate to produce preforms can cause localized surface pulverization and cracking after high-temperature firing. It not only affects the quality of the product, but also greatly reduces the firing qualification rate and increases production costs. Since the use of brown corundum with high powdering rate has serious quality risks, it is necessary to test its powdering rate.

                                                  Currently, there are no methods or standards for testing the powdering rate. This article uses the following two methods:

                                                  Qualitative testing: For each incoming batch of brown corundum, a preformed product is formed according to a specific formula. After drying, it is sintered at a low temperature of 600°C or 1000°C to observe whether it exhibits cracking, thereby determining whether the batch of brown corundum has been powdered.

                                                  Quantitative testing: A sample of a certain particle size (3-1 mm) is taken, weighing M3. This sample is boiled in a pressure cooker for 60 minutes (or heated in an electric furnace at 1000°C for 1 hour). After drying, the sample is observed for changes in color and size. The weight of the material passing through a 1 mm sieve is recorded as M4. The powdering rate can then be expressed as:

                                                  Powdering rate (%) = (M3 – M4) / M3 × 100%

                                                  A powdering rate of no more than 0.10% is considered acceptable. The standard for controlling the powdering rate may vary for different refractory products.

                                                  Delamination of Magnesium-Aluminum Preforms Containing Silicon Micropowder

                                                  During the production of magnesium-aluminum preforms containing silicon micropowder, surface delamination often occurs on the molded surface, leading to delamination of the finished product. This can seriously impact the service life and yield of the refractory product. There are two types of SiO2 micropowder: one made from high-purity silica and the other a byproduct of producing metallic silicon or ferrosilicon. The latter is the silicon micropowder commonly used in refractory materials. It is hollow, spherical, active, non-agglomerated, and has good filling properties. It undergoes a pozzolanic reaction at room temperature and forms mullite with Al2O3 at high temperatures, both of which contribute to increased castable strength. However, it must possess stable physical and chemical properties; otherwise, the product’s performance will be affected. During the production of refractory preforms, changes in silicon micropowder batches often cause fluctuations in the moldability of the finished product. The most obvious manifestation is delamination of the finished product after molding.

                                                  To address this delamination issue, the silicon micropowder used is first screened to homogenize its composition. Secondly, during the mixing process, increase the amount of retarder, appropriately increase the amount of water added, and appropriately extend the wet mixing time before molding. Finally, appropriately lower the curing temperature of the product, which can basically solve the problem.

                                                  Flashing of Corundum-Spinel Preforms Containing Aluminum Micropowder

                                                  α-Al2O3 micropowder is a commonly used refractory powder in the production of monolithic refractories. Ultrafine α-Al2O3 powder is produced by calcining industrial alumina. Its characteristics include good dispersibility, small particle size, easy sintering at high temperatures, and minimal volume effect. In production, corundum-spinel preforms containing aluminum micropowder often develop a layer of milky white liquid and honeycomb-like pits on the molding surface during curing after molding. These pits are accompanied by bubbles escaping from the pits. Removing the liquid from the molding surface reveals that the molding surface is essentially composed entirely of powder. This phenomenon is known as flashing. The thickness of the powder layer on the molding surface varies depending on the degree of flashing.

                                                  Flashing is more pronounced in winter, posing a serious quality risk to prefabricated refractory components. This can lead to uneven microstructure, low strength, decreased thermal shock and corrosion resistance, and a shortened service life. Extensive investigation and analysis have revealed a correlation between flashing and the content of the metal oxides K₂O and Na₂O in the raw aluminum micropowder. When this content is above 0.2%, flashing is virtually nonexistent when forming prefabricated components using this aluminum micropowder mix. However, when this content is below 0.1%, flashing is inevitable and can be quite severe.

                                                  Flashing can be alleviated or resolved through the following methods:

                                                  • ① Reduce the normal water addition by 0.1-0.3 percentage points.
                                                  • ② Adjust the ratio of retarder to accelerator, increasing the accelerator while reducing the retarder.
                                                  • ③ Appropriately increase the curing temperature after forming.
                                                  • ④ When mixing, add a small amount of fused magnesia fine powder, and the amount added should not exceed 0.5%.

                                                  High-Temperature Treatment of Embedded Hook Prefabricated Parts

                                                  High-temperature treatment of embedded hook prefabricated parts is a common problem in the production of refractory prefabricated parts. The high-temperature treatment temperature here refers to temperatures above 1100°C. Therefore, direct firing is not an option, as is typical. Certain protective measures must be taken to prevent oxidation during firing of the metal hooks.

                                                  To this end, tests were conducted using rebar segments of the same thickness as the hooks. Three approaches were tested: charcoal embedment, coating the rebar segments with an anti-oxidation coating, and wrapping the rebar segments with refractory wool, followed by a castable as an external anti-oxidation layer.

                                                  Firing in a high-temperature furnace revealed that the rebar embedded in charcoal embedment remained intact. The rebar coated with anti-oxidation coating exhibited the most severe oxidation. The rebar segments with castable as an external anti-oxidation layer experienced partial oxidation due to microcracks in the castable during firing, resulting in an oxide layer thickness of 1-2 mm.

                                                  This demonstrates that charcoal embedment is the optimal approach. During the carbon burial treatment, it should be noted that partial or full carbon burial treatment should be performed according to the structural characteristics of the prefabricated parts.

                                                    Get Free Quote

                                                    Your Name (required)

                                                    Your Email (required)

                                                    Your Phone

                                                    Required Products (required)

                                                    Enquiry Information

                                                    Why the Service Life of Honeycomb Ceramic Heat Storage Bodies Not Long?

                                                    What are the reasons? Why the service life of honeycomb ceramic heat storage bodies not long? At present, the service life of honeycomb ceramic heat storage bodies is not very long. The main problems that occur during use are melting, softening, rupture, blockage, and corrosion. There are special cases where a large amount of fragmentation occurs after only one week of use, and there are also those whose service life reaches 2 years due to the large heating capacity or the low service temperature. However, the service life of most heat storage heating furnaces is generally 8-12 months, and the average life is generally short. Common reasons for damage to the honeycomb ceramic heat storage body and short lifespan are analyzed as follows:

                                                    Honeycomb Ceramic Heat-Storage Material
                                                    Honeycomb Ceramic Heat-Storage Material

                                                    Free Quote

                                                      Free Quote

                                                      Your Name (required)


                                                      Your Email (required)

                                                      Your Phone

                                                      Required Products (required)

                                                      Enquiry Information

                                                      1. Small hole blockage

                                                      Blockage of small holes is one of the most common causes of damage to the honeycomb ceramic heat storage body. After the small holes of honeycomb ceramic heat storage bodies are blocked, it not only directly causes a significant reduction in its heat storage and smoke exhaust performance. It also causes uneven smoke exhaust and heat exposure of the honeycomb ceramic heat storage, which can easily cause cracks and aggravate its damage.

                                                      The Small Holes of Honeycomb Ceramic are Blocked
                                                      The Small Holes of Honeycomb Ceramic are Blocked
                                                      1. Low load softening temperature

                                                      If the load softening temperature is low, during long-term use in normal high temperature environments or when abnormal high temperature occurs, the lower honeycomb ceramic heat storage body will not be able to withstand the combined effect of high temperature and load, and will soften, compressive deformation. This causes the row of honeycomb ceramic heat storage bodies to collapse, and even causes the adjacent honeycomb ceramic heat storage bodies to collapse together, resulting in the blockage of the lower heat storage chamber. The upper part forms a high-temperature channel gap without honeycomb ceramic heat storage body, and the high-temperature flue gas is directly discharged. The heat in the flue gas cannot be effectively recycled, the smoke exhaust temperature is high and the heating capacity is significantly reduced.

                                                      1. Local high temperature and secondary combustion

                                                      Under normal circumstances, although the furnace temperature exhaust gas exhaust temperature does not exceed 1300℃, the combustion temperature of the flame is much higher. According to the fuel combustion temperature calculation, when the blast furnace gas is preheated to 1000℃, its flame combustion temperature can reach 2400℃. The flame combustion temperature of high-calorie gas fuels, such as natural gas and acetylene, can be as high as 3000℃. Therefore, when secondary combustion or local high temperature channels appear in the heat storage chamber, the temperature it receives has exceeded the load softening temperature and the refractory tolerance limit. The honeycomb ceramic heat storage body will naturally soften, even shrink holes, or severe ablation into clusters.

                                                      The honeycomb ceramic heat storage body ablation into clusters
                                                      The honeycomb ceramic heat storage body ablation into clusters
                                                      1. Poor corrosion resistance and poor slag resistance

                                                      The honeycomb ceramic heat storage body near the first row of the high temperature side reacts with the molten iron oxide or iron oxide small particles brought by the flue gas. The crystal phase inside the honeycomb ceramic heat storage body changes, causing the refractory resistance, load softening temperature, and slag resistance to a sharp decline. Adhesion, shrinkage, blockage or even collapse occurs between each other.

                                                      1. Poor ability to withstand cold and heat

                                                      Due to the frequent heat storage and heat release of honeycomb ceramic heat storage bodies, the temperature changes are severe, causing the walls of the honeycomb ceramic heat storage bodies to be subjected to tensile and extrusion stress alternately. And cracks are generated by the action of thermal stress, and severe fractures will occur. At the same time, collapse will also occur, resulting in the blockage of the lower part of the honeycomb ceramic heat storage body and a hollow space on the upper part, which cannot be used normally. Therefore, the working characteristics of the honeycomb ceramic heat storage body with frequent changes in heat force are the main reasons for its shorter life.

                                                      1. Poor volume stability at high temperature and large deformation of refiring

                                                      During use, most honeycomb ceramic heat storage bodies are installed in cold state and used in hot state. Since the honeycomb ceramic heat storage body has poor high temperature volume stability and large refiring deformation and shrinkage, a gap without honeycomb ceramic heat storage body will be formed on the upper part of the heat storage chamber during use. At this time, the honeycomb ceramic heat storage body itself is not damaged, but most of the flue gas slips directly from the upper gap and gradually forms a high-temperature channel in the upper part of the heat storage chamber. The high temperature causes the nearby honeycomb ceramic heat storage body to rupture, and the channel further expands, thereby accelerating the rupture and damage of the honeycomb ceramic heat storage body.

                                                      1. Biased flow problem

                                                      In the heat storage chamber, the heat exchange process is roughly as follows: in the exhaust stage, when the flue gas flows through the honeycomb ceramic heat storage body, the sensible heat is stored in the honeycomb ceramic heat storage body, heating the honeycomb ceramic heat storage body. In the combustion stage, the air (or gas) is heated when it flows through the honeycomb ceramic heat storage body, and the residual heat is brought back to the furnace. In any of the above stages, if the gas has a biased flow in the heat storage chamber, after several reversals, it is easy to cause local high temperature of the honeycomb ceramic heat storage body and generate thermal stress. When the temperature stress generated exceeds its tolerance limit, the honeycomb ceramic heat storage body will break.

                                                      1. Fire barrier brick problem

                                                      The fire barrier brick plays a dual role of fixing and fire barrier protection for the honeycomb ceramic heat storage body, so it also has an important impact on the service life of the honeycomb ceramic heat storage body. If the material selection or shape and size design of the fire barrier brick is improper, there will be problems such as low brick strength or excessive gap, which will cause the honeycomb ceramic heat storage body to directly contact the flame or secondary combustion. As a result, the honeycomb ceramic heat storage body is prone to rupture, collapse, melting, softening and other problems.

                                                      1. Influence of water vapor in gas pipeline

                                                      When a large amount of condensed water is precipitated from the end of the gas pipeline and enters the heat storage chamber, or when the cooling water pipe in the furnace breaks and flows into the heat storage chamber along the furnace wall, the heat storage body in a high temperature state is very easy to break when encountering liquid water. At the same time, when water enters the heat storage chamber, the viscosity of dust impurities in the fuel gas and iron oxide powder in the flue gas increases, and chemical changes occur, increasing the corrosiveness of impurities. Therefore, it is easy to cause blockage and corrosion of the honeycomb ceramic heat storage body, which accelerates the shortening of the service life of the honeycomb ceramic heat storage body.

                                                        Get Free Quote

                                                        Your Name (required)

                                                        Your Email (required)

                                                        Your Phone

                                                        Required Products (required)

                                                        Enquiry Information

                                                        Composition and Structure of Refractory Materials for Industrial Furnace Lining

                                                        Although there are many types of industrial furnaces, in terms of basic structure, they mainly include three parts:

                                                        • ① Heating system: including equipment systems that provide various heat sources to the materials in the industrial furnace. Such as: energy medium pipelines and equipment systems, power transmission system transformer equipment, etc.
                                                        • ② Industrial furnace body: This is the basic structure of the industrial furnace. Generally includes frame support structure, furnace structure, material conveying system, etc.
                                                        • ③ Smoke exhaust system: mainly includes flue, chimney, heat exchanger, and smoke exhaust auxiliary equipment etc.
                                                        • ④ Other supporting equipment.

                                                        Design of Industrial Furnace Lining Structure

                                                        The basis for completing the furnace construction material to the furnace lining structure when designing the industrial furnace furnace lining structure is a key procedure for achieving the purpose of the equipment process. kiln brick lining. Here, we mainly introduce the furnace lining structure with refractory materials as the main material. During the design process of furnace lining, the following aspects are usually needed:

                                                        • (1) Reasonable furnace size. This is determined by the production process served by industrial furnaces, and the furnace size is subject to process requirements and the overall design of the equipment. The furnace size is the basic condition for the industrial furnace production process. The rationality of the furnace lining size directly affects the production of the entire process.
                                                        • (2) Stable structural form. Due to the special purpose of industrial furnaces, the furnace lining is generally heated on one side. When the furnace lining is in such extreme temperature difference environment for a long time, it may cause structural damage, stress deformation, or form a melting state on the hot surface, the furnace lining structure will be greatly tested. Therefore, the stability of the furnace lining structure is a key indicator of the furnace lining design.
                                                        • (3) Economic and effective material allocation.
                                                        Rongsheng Refractory Lining Cases
                                                        Rongsheng Refractory Lining Cases

                                                        Free Quote

                                                          Free Quote

                                                          Your Name (required)


                                                          Your Email (required)

                                                          Your Phone

                                                          Required Products (required)

                                                          Enquiry Information

                                                          Inner Lining Structure of Industrial Furnace

                                                          Generally speaking, there are four main forms of the inner lining structure of industrial furnaces:

                                                          • (1) Refractory brick lining.
                                                          • (2) Amorphous refractory lining.
                                                          • (3) Refractory ceramic fiber lining.
                                                          • (4) Mix lining.

                                                          Refractory Brick Masonry

                                                          Refractory brick masonry is composed of refractory bricks and refractory mud. kiln brick lining is the most traditional and widely used masonry structure in industrial furnace body structure. When constructing or building an industrial furnace body structure with refractory bricks, first of all, refractory bricks and refractory mud should be selected according to the design or original structural requirements. Then the masonry structure is constructed according to the design drawings. Generally, masonry with refractory bricks is mainly used in the walls, furnace tops, furnace bottoms and pipelines in industrial furnace body structures.

                                                          Amorphous Refractory Lining

                                                          The so-called amorphous refractory lining means that the main material that constitutes the furnace lining lining is an amorphous refractory material. These amorphous refractory materials mainly include: refractory castables, refractory plastics, refractory spray coatings, etc.

                                                          When refractory castable is the main material of the furnace body structure, it is used for working layers such as the side walls, furnace tops, pipeline linings and outer bandages of the furnace body structure. It is also used as an insulation layer between the working layer and the furnace steel structure (such as the furnace shell).

                                                          Refractory plastic: In theory, refractory plastic can replace the function of refractory bricks on the main structure of various industrial furnaces. However, in practical application, you still need to study the following issues before making a decision.

                                                          • ① Type and form of furnace: is it a smelting furnace, reactor or heating furnace;
                                                          • ② Furnace structure: furnace top, side wall or bottom; construction thickness, whether there is heat insulation material; height and load condition of the furnace wall, etc.;
                                                          • ③ Operation status of the furnace: furnace temperature and its changes, whether the operation method is continuous or intermittent, whether the heated material is solid or liquid or gas, impact load in the furnace, etc.;
                                                          • ④Economics and construction conditions, etc. In actual industrial furnace furnace structures, refractory plastics are most commonly used in the furnace roof and furnace wall parts of the furnace body.

                                                          Refractory spray coating: Because spraying tools have the advantages of being able to be at any angle, anywhere, and forming any geometric shape. Therefore, in the furnace lining design of industrial furnaces, a lining formed by spray coating is often used.

                                                          Since the characteristics of spray coatings are basically the same as those of castables, they are also similar to those of castables in structural form. Its application parts in industrial furnace bodies include furnace walls, furnace tops, pipeline lining walls, thermal insulation layers, etc. In order to stabilize the structure of the spray coating lining, different forms of metal anchors or anchor bricks are usually provided in the lining according to specific structural requirements.

                                                          Refractory Ceramic Fiber Lining

                                                          Refractory ceramic fibers are loose as a semi-finished raw material and can be processed into finished products such as fiber blankets, fiber ropes, fiber paper, fiber boards, fiber fast-tipping (folding modules or laminated modules). After adding the binder, it can be used as a fiber spray coating or fiber castable. Ceramic fibers can be used directly in a loose shape. However, when it exists as a lining, ceramic fibers are often processed into blankets, plates, or blocks for use.

                                                          Therefore, in the lining of existing industrial kilns, it is essentially determined that refractory materials must be used to protect the melting changes of the shell. Based on the actual working conditions of each industrial kiln, a mixed body structure of a variety of refractory materials is generally used to extend the life of the furnace lining and save production costs for enterprises.

                                                            Get Free Quote

                                                            Your Name (required)

                                                            Your Email (required)

                                                            Your Phone

                                                            Required Products (required)

                                                            Enquiry Information